EXPEC 7350 三重四极杆(ICP-MS/MS)测定松香中的 S

1前言

松香作为一种重要的工业原料,可广泛应用于涂料、肥皂、橡胶、化工、医药、农药、印刷等行业。随着松香再加工工业的发展,国内外已出具相关标准文件对其中的金属元素进行约束,以防止金属含量太高导致催化剂中毒、产品绝缘性能降低。当然,无机元素硫含量的超标,也会导致深加工问题的产生,影响产品的出口质量,制约经济发展。目前,对于松香中金属元素,比如:铁、铅、铜、锌和铝等的测试分析方法已有报道。然而,松香中微量硫的定量分析报道较少,分析方法欠缺,这为松香中无机硫的分析测定提出了更大的挑战。因此,建立一套快速、准确、稳定、高效的硫含量测试方法对于松香产品质量的把控至关重要。

对单四极杆 ICP-MS 而言,测定有机样品中 S 具有很大的挑战,S 元素具有较低的电离效率大大降低分析信号强度,导致其灵敏度不能满足测试要求。与此同时 S 容易受到 O_2 ⁺、NO⁺等干扰,使用单四极杆 ICP-MS 的碰撞模式不能完全消除干扰。三重四极杆 (ICP-MS/MS) 拥有优越的反应池技术,使待测元素 S 在反应池中进行氧气质量转移。由于 S 与 O_2 之间的反应为放热反应, ΔH 为负值,如下面的公式所示;因此,S⁺可以很高效地转化成它们的氧化物离子 SO⁺,可以通过测量这些产物离子测定 S,从而避开了在原始质量数 SO⁺,可以通过测量这些产物离子测定 S,从而避开了在原始质量数 SO⁺,再配合双四极杆模式,使 SO⁻6ArC⁺离子在进入反应池之间被第一级四极杆截留,从而消除了对 SO⁻的干扰。因此三重四极杆(ICP-MS/MS)在 SO⁻10平式物分离从而实现 S 元素的测定。

$$S^++O_2 \rightarrow SO^++O$$
 $\Delta Hr = -0.34 \text{ eV}$

本文通过使用 EXPEC 7350 型 ICP-MS/MS,对松香样品采用溶解后直接进样测试,结果表明,在氧气质量转移模式下,S元素线性相关系数(R²)均大于 0.999,检出限为 2.24 μg·L¹,测试精密度优于 2.15%,加标回收率在 98.34%~109.02%之间。该方法便捷、稳定、高效,可以实现松香中硫含量的准确测试分析,这也为有机样品中硫含量的准确测试分析提供思路和借鉴。

关键词: ICP-MS/MS, 氧气质量转移, 松香, S 元素

2 实验部分

2.1 仪器

型号: EXPEC 7350型 ICP-MS/MS

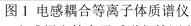


表 1 电感耦合等离子质谱仪检测参数

仪器参数	设定值	仪器参数 🗸	设定值
等离子体功率	1550 W	蠕动泵转速	24 r/min
冷却气	14.0 L/min	驻留时间	50 ms
辅助气	1.0 L/min	采样深度	3.06 mm
雾化气	0.646 L/min	Q1 入口电压	-20 V
附加气-O ₂	40 mL/min	池偏置电压	-0.8 V
反应气-O ₂	0.2 mL/min	提取透镜电压	-178 V

2.2 试剂及标准品

试剂: 电子级无水乙醇;

纯水: 18.25 MΩ·cm 去离子水;

标准溶液: S 单元素标准溶液, 1000 μg/mL, 国家有色金属研究院。

3 样品处理与标准曲线配制

3.1 样品处理

准确称取 0.25 g(精确至 0.001g)松香样品于 10 mL 容量瓶中,加入 5 mL 无水乙醇,置于 60 ℃恒温超声仪加热 2 h,待松香完全溶解后,再使用无水乙醇定容至 10 mL,取出冷却待上机测试。

3.2 标准曲线

精密量取 S 标准溶液稀释得到的标准溶液浓度梯度见下表:

表 2 标准曲线浓度梯度

溶液编号	元素	标准溶液浓度(μg/L)
1	S	0/10/20/50/100/200

4 结果和讨论

4.1 标准曲线与检出限

通过乙醇空白样品连续进样 10 次测定 S 元素的检出限,结果见表 3。S 元素的测定质量数、分析模式、校准曲线线性(以相关系数 R²来衡量)也列于表 3 中,典型校准曲线见附录。表 3 测定元素质量数、相关系数及检出限

元素	质量数	模式	线性相关系数	检出限 (μg/L)
S	32→48	QQ-氧迁移	0.9999	2.24

4.2 测试精密度

为考察仪器测定样品时的稳定性,以 $20~\mu g/L$ 标准曲线溶液连续进样分析 7~次,检验系统的精密度,S~元素精密度 RSD 为 2.15%。

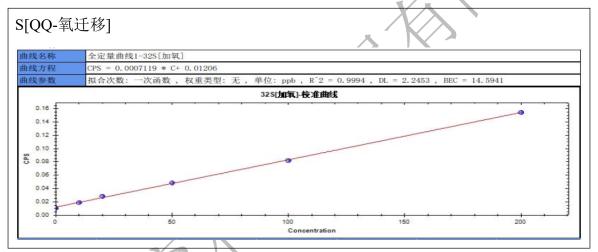
衣 4 件吅相名/及(Ⅱ-7)			
样品	名称	S	
	第1次	20.32	
	第 2 次	20.10	
松香	第 3 次	20.81	
	第 4 次	20.31	
	第 5 次	19.87	
	第6次	19.42	
	第 7 次	19.99	
	均值	20.12	
	RSD%	2.15	

表 4 样品精密度 (n=7)

4.3 实际样品测试

表 5 松香中 S 元素含量测试结果 (mg/kg)

样品名称		S[QQ-氧迁移]
7/78	平行样 1	1.26
14//	平行样 2	1.37
松禾 1	平行样 3	1.30
72/13-1	平均值	1.31
	RSD%	4.25
, "	加标回收率%	98.34
	平行样 1	0.58
松香-2	平行样 2	0.54
	平行样 3	0.56
	平均值	0.56
	RSD%	3.57
	加标回收率%	102.51
松香-3	平行样 1	1.07
	平行样 2	1.16
	平行样 3	1.13
	平均值	1.12


RSD%	4.09
加标回收率%	109.02

5结论

本文通过使用 EXPEC 7350 型 ICP-MS/MS,对松香样品采用溶解后直接进样测试,结果表明,在氧气质量转移模式下,S元素线性相关系数 (R^2) 均大于 0.999,检出限为 2.24 μ g·L⁻¹,测试精密度优于 2.15%,加标回收率在 98.34%~109.02%之间。该分析方法操作简单,测试稳定,效率高,为实验室进行硫含量的准确测试分析提供思路和借鉴。

6 附录

6.1 标准曲线

